Fast Source-Level Data Assignment to Dual Memory Banks

Alastair Murray and Björn Franke
Institute for Computing Systems Architecture,
School of Informatics, University of Edinburgh

SCOPES: March 14th, 2008
Overview

• Many DSPs have dual on-chip memories to increase bandwidth.

• Automatic methods to exploit these already exist:
 – Aren’t used in Industrial DSP compilers.
 – Give little or no control to the programmer.

• A source-level solution would allow programmer interaction.
 – Creates some new issues!
Outline

• Dual memory bank architectures.

• Automatic assignment of variables to memory banks.

• Manual assignment of variables to memory banks.

• A new technique: Automatic assignment using DSP-C.

• A new colouring method: Soft Colouring.

• Empirical results.

• Summary.
Dual Memory Bank Architectures

Iteration N

Iteration N+1

Iteration N+2

for (i = 0; i < N; i++) {
 accum += A[i] * B[i];
}

0: LOAD(A)→ REG[A]
1: LOAD(B)→ REG[B]
MAC REG[A'], REG[B']

A. Murray and B. Franke Fast Source-Level Data Assignment to Dual Memory Banks March 14th, 2008
Dual Memory Bank Architectures

- **Iteration N**: 0: XLOAD(A)+ → XREG[A]
 YLOAD(B)+ → YREG[B]
 MAC XREG[A'], YREG[B']

- **Iteration N+1**:
 for (i = 0; i < N; i++) {
 accum += A[i] * B[i];
 }

- **Iteration N+2**:
 XADDR[A]
 YADDR[B]
 XMEM[A]
 YMEM[B]
 XREG[A]
 YREG[B]
 MAC
 GPR
Automatic Assignment

• Existing solutions operate on compiler IR.
 – Mostly low-level.
 – Builds some form of interference graph.
 – Colours graph aiming to minimise interference.

• Leading existing solutions based on Integer Linear Programming.

• Seen little application in Industry.
Manual Assignment

• Assign variables to memory banks via C language extensions.
 – DSP-C
 – Embedded C

• Supported by many DSP compilers.

• Syntax examples:

 float X data[32];
 int X * Y pointer;
Automatic DSP-C Assignment

- Our approach:
 - Create a C-to-DSP-C source-level transformation tool.
 - Have this tool perform full or partial assignment.
 - Portable to any DSP-C compiler.

- Allows programmers to place some variables manually.

- Requires additional analysis to ensure correctness:
 - Pointer aliasing.
 - Function parameters.
Choosing an Assignment

- Leading existing technique – Integer Linear Programming:
 - Gets good results.
 - Scalability issues.
 - Multiple equivalent solutions.

- Newly proposed technique – Soft Colouring:
 - Based on a distributed systems algorithm.
 - Was designed for ‘soft’ colouring constraints.
 - Not necessarily optimal.
 - Stochastic, so multiple solutions are a natural result.
Soft Colouring Algorithm

- Basic idea:
 1. Initialise every variable to a random colour.
 2. For each variable:
 3. Calculate locally optimal colour.
 4. 50% probability of changing to the locally optimal colour.
 5. While some nodes are still not locally optimal, iterate.

- Settles on some local maxima.
Results - ILP vs Exhaustive

Results - ILP vs Soft Colouring

A. Murray and B. Franke Fast Source-Level Data Assignment to Dual Memory Banks March 14th, 2008
Results - Colouring Times

- Timings taken using an Intel Xeon 3GHz.
Summary

- Future work:
 - Investigate different interference graph constructions to minimise range.

- Source-level assignment gives more control to the programmer.

- Easily portable.

- Leads to range of equivalent ILP solutions.

- Soft Colouring finds similar range of results but scales more efficiently.
Any Questions...?