A Model-based, Single-Source approach to Design-Space Exploration and Synthesis of Mixed-Criticality Systems

Eugenio Villar
Fernando Herrera
Pablo Peñil

University of Cantabria
Spain
Motivation & Introduction

Contrex Modeling Methodology
 - SW Synthesis
 - Modeling of Mixed-Criticality Embedded Systems
 - Modeling for Design-Space Exploration

Future work

Conclusions
Agenda

- Motivation & Introduction
- Contrex Modeling Methodology
 - SW Synthesis
 - Modeling of Mixed-Criticality Embedded Systems
 - Modeling for Design-Space Exploration
- Future work
- Conclusions
Motivation

- Design productivity gap
 - Raising the abstraction level

- Multi-Processing & Heterogeneous platforms

- Increasing SW content
 - SW-centric design methodologies
Usual SW development flow

- Architectural Design
- HW/SW platform
- Architectural mapping
- Ad/Hoc SW development
 - System calls
 - Communication functions
 - I/O functions & drivers
- Verification & Debug
- Costly fixing of wrong design decisions
Reusability

Flight Control

Application Evolution Time

Texas Instruments OMAP Evolution Time

Freescale IMX Evolution Time

SCOPES 2015, Schloss Rheinfels
Introduction

- Model-Driven Design (MDD)
 - High-abstraction level
 - Mature SW engineering methodology

- UML language
 - Application to embedded systems design
Introduction

- Why UML?
 - Natural way to capture system architecture
 - Standard way
Introduction

- Why UML?
 - Natural way to capture system architecture
 - Standard way

- UML language
 - Semantics lacks
 - What is each component?
 - What kind or interaction each link actually means?
 - Domain-specific profiles
 - UML/MARTE
Introduction

- **M ARTE**
 - Standard UML profile for real-time embedded systems
 - Platform-Independent Model (PIM)
 - Platform Description Model (PDM)
 - Platform-Specific Model (PSM)
 - Rich semantics content
 - Single-source approach
Motivation & Introduction

Contrex Modeling Methodology
 - SW Synthesis
 - Modeling of Mixed-Criticality Embedded Systems
 - Modeling for Design-Space Exploration

Future work

Conclusions
CONTREX Modeling Methodology

Main features

- MDD support
- Component-Based Engineering approach
- SW centric
- Standard
 - MARTE profile

- SW synthesis
- Supporting Mixed-Criticality Modeling
- Supporting Design-Space Exploration
CONTREX Modeling Methodology

- Architectural Design
- Code reuse and/or development
 - platform independent
- HW/SW platform
- Architectural mapping
SW Synthesis

- Functional synthesis
 - Platform-Specific code
 - Optimized C code for DSPs
 - OpenCL/GL for GPUs
 - C/C++ & OpenMP for SMPs...
SW Synthesis

- Communication synthesis
 - Architectural mapping
 - Same memory space
 - Same OS
 - Different processing nodes
 - Benefits / Drawbacks
 - Communication Speed
 - Memory protection
 - Memory/cache use
 - Scheduling
 - Parallelism…
CONTREX Modeling Methodology

- Mixed-Criticality approach

Data Mining | Flight Control | Camera Control | Logging

Predictable | Performance

Low-Cost

SCOPES 2015, Schloss Rheinfels
CONTREX Modeling Methodology

- Mixed-Criticality

Mixed-Criticality Application

Shared Resources
CONTREX Modeling Methodology

- Mixed-Criticality
- Criticality
 - Integer Level of importance
 - Functional & Extra-Functional Requirements
 - Implications on analysis and development
- In-lined with usual definitions
 - Level of assurance against failure [Burns&Davis, 2015]
 - Safety Standards
 - IEC/EN 61508 (SIL)
 - DO-178B
 - ISO 26262 (ASIL)
CONTREX Modeling Methodology

- Criticality of Value Annotations
 - Synthetic description of criticalities
 - MC-aware schedulability analysis
 - WCET = F(Criticality)
 - Probabilistic WCET analysis techniques
Criticality of Application Components

- For imposing conditions on the software development
- Associate criticality to all the related constraints and sub-components
CONTREX Modeling Methodology

- Criticality of Platform Components
 - HW constraints derived from the criticality level
 - Imposing conditions on the hardware development
 - Coherence of application to platform component mapping

NFP_Constraint

<table>
<thead>
<tr>
<th>kind:ConstraintKind [0..1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>criticality: Integer [*]</td>
</tr>
</tbody>
</table>
CONTREX Modeling Methodology

- Design Space Exploration
 - A single model for describing the Design Space
 - DSE parameters: declared as VSL expressions

```
«hwBus»
<Component>
TDMA_BUS

/+ numberSlots : NFP_Natural = $numberSlots={4,6,8}
/+ timeSlot : NFP_Duration
/+ capacitySlot : NFP_DataSize
/+ payloadRateSlot : NFP_DataTxRate
/+ timeCycle : NFP_Duration
```

within an attribute of a component declaration

Through a constraint associated to a component instance

SCOPES 2015, Schloss Rheinfels
CONTREX Modeling Methodology

- Design Space Exploration
 - Mapping Exploration

```plaintext
assign
assign
from=[accel_IO]
from=[flight_alg]
to=[mb1.exe, mb2.exe]
to=[mb1.exe, mb2.exe]
```
CONTREX Modeling Methodology

- **Design Space**
 - a N-dimensional cube ($3^6 = 729$)
CONTREX Modeling Methodology

- **DSE rules**
 - Constrain the N-dimensional cube

DSE Rule

```
dseRule
parameters=[nif2slots=(netif2,assignedSlots), totslots=(tdma_bus,numberSlots), nif1slot=(netif1,assignedSlots)]
expression=(nif1slots+nif2slots<=totslots)
```
Agenda

- Motivation & Introduction
- Contrex Modeling Methodology
 - SW Synthesis
 - Modeling of Mixed-Criticality Embedded Systems
 - Modeling for Design-Space Exploration
- Future work
- Conclusions
Future Work

- Programming the Computing Continuum
 - Spanning computing platforms of many kind
Future Work

- MDE as a powerful approach
 - …but based on Domain-Specific Languages & Tools
Future Work

- MDE as a holistic system engineering approach
 - Commonalities across domains
Agenda

- Motivation & Introduction
- Contrex Modeling Methodology
 - SW Synthesis
 - Modeling of Mixed-Criticality Embedded Systems
 - Modeling for Design-Space Exploration
- Single-source design & programming framework
- Future work
- Conclusions
Conclusions

- Contrex UML/MARTE Modeling Methodology
 - Powerful Single-Source approach
 - Reusability
 - Component-Based Engineering approach
 - SW centric

- DSE-oriented
- Supporting Mixed-Criticality Design
- SW synthesis

- Extensible to distributed applications