Runtime Adaptation of Application Execution under Thermal and Power Constraints in Massively Parallel Processor Arrays

Éricles Sousa¹, Frank Hannig¹, Jürgen Teich¹, Qingqing Chen², and Ulf Schlichtmann²

¹Hardware/Software Co-Design, Department of Computer Science
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
²Institute for Electronic Design Automation
Technische Universität München (TUM), Germany

Workshop on Software and Compilers for Embedded Systems (SCOPES)
St. Goar, Germany, June 1-3, 2015.
Motivation

• Here, we consider a resource-aware computing paradigm to exploit **runtime adaptation** without violating any **thermal** and/or **power** constraints in a programmable **MPPA**

[Source: Tilera Inc.]

[Source: http://www.phys.ncku.edu.tw/~htsu/humor/fry_egg.html]

[KIT's humanoid ARMAR]
A resource-aware computing paradigm

• Each application may use available computing resources in 3 phases:
 – Exploring and claiming them (invade)
 – Copying program code and data to the claimed resources as well as configuring them for parallel computing execution (infect)
 – Releasing occupied resources (retreat)

• Support for resource awareness at various levels
 – Application level
 – Runtime-system level
 – Architecture level

• Architecture consists of different compute tiles
 – General purpose CPU tiles
 – General purpose CPUs with reconfigurable fabrics
 – Programmable accelerators (MPPA)
• Motivation

• Tightly Coupled Processor Arrays (TCPAs)

• Proposed System

• Experimental Results

• Conclusion
Tightly Coupled Processor Arrays (TCPAs)

Class of massively parallel on-chip processor architectures

- Highly customizable at synthesis time
- Many parameters and configuration options
 - E.g., number of PEs, data path width

Flexibility at runtime

- Programmable, reconfigurable interconnect

Used as accelerators in MPSoC or tiled architectures for computationally intensive tasks from domains such as

- Digital signal processing, audio and video
- Linear algebra (matrix/vector computations)
- Cryptography, …
TCPAs cont’d

Processing elements (PEs)
• VLIW architecture
• Weakly programmable
 – Small instruction set and memory
 – Small register file
 – No direct main memory access

Memory structures
• Reconfigurable buffers at the borders of the array
• FIFOs at PEs’ inputs, and internal general purpose and feedback shift registers for cyclic data reuse
TCPAs cont’d

Interconnect
- Switched connections
- Single-cycle latency
- Switching possibilities can be defined at synthesis time, which enables the configuration of different interconnect topologies at runtime

Systolic Array
TCPAs cont’d

Interconnect
- Switched connections
- Single-cycle latency
- Switching possibilities can be defined at synthesis time, which enables the configuration of different interconnect topologies at runtime

2D Torus
TCPAs cont’d

Interconnect
• Switched connections
• Single-cycle latency
• Switching possibilities can be defined at synthesis time, which enables the configuration of different interconnect topologies at runtime

4D Hypercube
Designing a Customized TCPA
Challenges

• How to estimate temperature without thermal sensors?
• How to estimate power consumption in large processor arrays with potentially hundreds of PEs?
• How to satisfy application requirements considering thermal and power constraints?

Proposed Solution

• A runtime adaptation system that exploits quality/throughput tradeoffs while satisfying thermal and power constraints

• Our solution uses the invasive computing concepts. Thus, it is possible to achieve
 – Constant throughput by reducing the quality of image processing (e.g., accuracy of edge detection), or
 – Constant quality by reducing the throughput
Outline

• Motivation

• Tightly Coupled Processor Arrays (TCPAs)

• Proposed System

• Experimental Results

• Conclusion
Thermal Estimation

• Without thermal sensors, we estimate the initial temperature inside the chip by generating the floorplan of TCPA using Cadence Encounter and a 45 nm CMOS technology.

• The floorplan is the input for HotSpot and as output, we obtain the thermal conductance values between PEs and the average temperature value ($T_{initial}$) of the entire processor array.

ASIC implementation of a 4x4 TCPA using the NanGate 45 nm Open Cell Library

Estimated thermal dissipation when only 4 PEs (on top of TCPA) are executing an application.
Power Estimation

• Unlike gate-level simulation, we propose a macro-modeling for power estimation.

• We synthesized different designs (e.g., varying number of functional units (FUs) in each PE, data path width, etc.)

• Then, we annotate the power consumption of each functional unit in a table.

• Each processing element of TCPA may have a different configuration, our model takes into account individual PEs of a two-dimensional array of size $X \times Y$. The number of FUs belonging to a PE is denoted by N_{FUs}.

• The values of S are the average switching activities of FUs, which are obtained from a cycle-accurate simulation and vary according to each application.

$$P_{avg} = \sum_{x=0}^{X-1} \sum_{y=0}^{Y-1} \sum_{n=0}^{N_{FUs}-1} P_{FU_n}(S(x,y,n))$$
The configuration manager holds configuration streams containing the assembly codes of PEs as well as the interconnect topology.

The configuration manager is mainly composed of three parts:
- Hardware/software interface
- Configuration loader
- Configuration memory
Runtime Adaptation

General assumptions

• Power budget can be dynamically updated in real-time by using a management of heterogeneous dark silicon processors, for example.

• The runtime thermal variation is calculated according to a well-known thermal equation, as follows:

\[T = \text{threshold} + (\bar{T}_{\text{initial}} - \text{threshold}) \cdot e^{-g \cdot t} \]

- \(T \): Current temperature (°C) inside the accelerator
- \(\text{threshold} \): Minimum \(T_{\text{min}} \) or maximum \(T_{\text{max}} \) temperature bounds for an application
- \(\bar{T}_{\text{initial}} \): Initial temperature
- \(g \): Thermal conductance between Pes
- \(t \): Time
Runtime Adaptation

Software

Start

\[(T < T_{\text{max}}) \text{ and } (P_{\text{avg}} < P_{\text{budget}}) \] (yes) or \((T \geq T_{\text{max}}) \text{ or } (P_{\text{avg}} \geq P_{\text{budget}}) \) (no)

\textit{infect}

All PEs

\textit{invade}

All PEs

No runtime adaptation

Our runtime adaptation
Runtime Adaptation

Start

yes

(T < T_{max}) and
(P_{avg} < P_{budget})

no

infect

All PEs

(T \geq T_{max}) or
(P_{avg} \geq P_{budget})

yes

no

invade

All PEs

infect

Less PEs

infect

less PEs and
retreat

unsed PEs

(T \leq T_{min}) and
(P_{avg} \leq P_{budget})

yes

no

Software

Steady-state

\begin{align*}
&\text{Start} \\
&\quad \rightarrow \frac{yes}{no} \\
&\quad \rightarrow \boxed{(T < T_{max}) \text{ and } (P_{avg} < P_{budget})} \\
&\quad \rightarrow \boxed{\begin{align*}
&\text{invade} \\
&\quad \rightarrow \boxed{\text{invade} \quad \text{All PEs}} \\
&\quad \rightarrow \boxed{\text{infect} \quad \text{All PEs}} \\
&\quad \rightarrow \boxed{\begin{align*}
&\quad \rightarrow \boxed{\text{infect} \quad \text{less PEs and}} \\
&\quad \quad \rightarrow \boxed{\text{retreat} \quad \text{unsed PEs}} \\
&\quad \rightarrow \boxed{\begin{align*}
&\quad \rightarrow \boxed{(T \geq T_{max}) \text{ or } (P_{avg} \geq P_{budget})} \\
&\quad \rightarrow \boxed{(T \leq T_{min}) \text{ and } (P_{avg} \leq P_{budget})}
\end{align*}}
\end{align*}}
\end{align*}}

\text{- No runtime adaptation} \\
\text{- Our runtime adaptation}
Runtime Adaptation

Start

Yes

\((T < T_{\text{max}})\) and \((P_{\text{avg}} < P_{\text{budget}})\)

infect

All PEs

infect

Less PEs

Yes

\((T \geq T_{\text{max}})\) or \((P_{\text{avg}} \geq P_{\text{budget}})\)

invade

All PEs

invade

Less PEs

Yes

\((T \leq T_{\text{min}})\) and \((P_{\text{avg}} \leq P_{\text{budget}})\)

Yes

No

No

No

Yes

No

No

No

No

No

Software

\begin{itemize}
 \item \textbf{No runtime adaptation}
 \item \textbf{Our runtime adaptation}
\end{itemize}

Temperature

Avg. Power

Time

infect

All PEs

infect

Less PEs and retreat

unsed PEs

SCOPES 2015 | Sousa et al. | Runtime Adaptation of Application Execution under Thermal and Power Constraints
Outline

• Motivation

• Tightly Coupled Processor Arrays (TCPAs)

• Proposed System

• Experimental Results

• Conclusion
Experimental Setup

FPGA design
- Xilinx Virtex-5 FPGA
- The architecture consists of a RISC processor and a TCPA, both connected through the ARM Advanced Microcontroller Bus Architecture (AMBA)
- The TCPA architecture is composed of a 5×5 array of VLIW processing elements running at 60 MHz

ASIC design
- Temperature and power consumption are estimated using the NanGate 45 nm technology
- Frequency: 550 MHz

Target application
- Edge Detection
- Input frame size: VGA (640×480)

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Window Size</th>
<th>Number of PEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laplace</td>
<td>5×5</td>
<td>25</td>
</tr>
<tr>
<td>Sobel</td>
<td>1×3</td>
<td>3</td>
</tr>
</tbody>
</table>
Experimental Setup

FPGA design
• Video stream Input/Output through DVI extension board
Experimental Results (FPGA Design)

Laplace 5×5

Sobel 1×3

![Graph showing execution time per frame versus number of PEs for 1x3 Sobel and 5x5 Laplace operations.](image)

- **Execution Time Per Frame (ms)**
 - 1x3 Sobel
 - 5x5 Laplace

- **Number of PEs**
 - 0 to 30

- **Level of Quality**
 - 0 to 3

Experimental Results (FPGA Design)
Experimental Results (FPGA Design)

Laplace 5 × 5

Sobel 1 × 3

Execution Time Per Frame (ms)

Number of PEs

Level of Quality

1x3 Sobel ▲ 5x5 Laplace
Experimental Results (FPGA Design)

Faster computation scenario providing 2 levels of quality and same throughput.
Experimental Results (ASIC Design)

ASIC Design

• Temperature variation inside the TCPA according to different number of PEs allocated for computation of 5×5 Laplace and 1×3 Sobel

• Temperature threshold
 - $T_{\text{max}} = 70^\circ C$
 - $T_{\text{min}} = 50^\circ C$

![Graph showing temperature variation over time for different numbers of PEs.](image)
Experimental Results (ASIC Design)

- Average power consumption of 5×5 Laplace and 1×3 Sobel using 25 and 3 PEs, respectively
 - $P_{avg} (5 \times 5 \text{ Laplace}) = 10.35 \text{ mW}$
 - $P_{avg} (1 \times 3 \text{ Sobel}) = 1.24 \text{ mW}$

- Reconfiguration overhead: $1.64 \mu s$
Outline

• Motivation

• Tightly Coupled Processor Arrays (TCPAs)

• Proposed System

• Experimental Results

• Conclusion
Conclusion

• We presented a strategy for runtime adaptation of application execution under thermal and power constraints in massively parallel processor arrays (MPPAs).

• Unlike [1], we exploit quality/throughput tradeoffs in image processing, keeping
 – (a) constant throughput by reducing the quality, or
 – (b) constant quality by reducing the throughput

• Running at 550 MHz, the reconfiguration overhead (1.64 μs) is more than 300 times faster than the execution time per frame (0.56 ms).

• The maximum power consumption of 25 PEs is 10.35 mW

Further Information

Runtime Adaptation of Application Execution under Thermal and Power Constraints in Massively Parallel Processor Arrays

Contact
Éricles Sousa
Hardware/Software Co-Design, Department of CS
University of Erlangen-Nuremberg
Cauerstr. 11, 91058 Erlangen, Germany
Email: sousa@cs.fau.de
Phone: + 49 9131 85-67312

Acknowledgements
- This work is supported by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre “Invasive Computing” (SFB/TR 89)
- Research Training Group 1773 "Heterogeneous Image Systems"
- Brazilian National Council for Scientific and Technological Development (CNPq)

www.invasive-computing.org